REPLICATION OF YULE'S 1899 ANALYSIS OF THE EFFECT OF CHANGE IN OUT-RELIEF RATIO ON CHANGE IN PAUPERISM 1871-1881 (32 LONDON METROPOLITAN UNIONS)

(Full sample is used; no correction for outlying or influential observations)

>USE "Z:\mydocs\ys209\yule.syd"
SYSTAT Rectangular file Z:\mydocs\ys209\yule.syd,
created Wed Feb 17, 1999 at 09:34:32, contains variables:
 UNION$       PAUP         OUTRATIO     PROPOLD      POP

>regress
>format 3
>rem Model 1
>model paup=constant+outratio
>estimate

Dep Var: PAUP   N: 32   Multiple R: 0.594   Squared multiple R: 0.353
Adjusted squared multiple R: 0.331   Standard error of estimate: 13.483
 
Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
CONSTANT            31.089        5.324        0.000      .       5.840    0.000
OUTRATIO             0.765        0.189        0.594     1.000    4.045    0.000
 
Analysis of Variance
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
Regression              2973.751     1     2973.751      16.359       0.000
Residual                5453.468    30      181.782
 
-------------------------------------------------------------------------------
*** WARNING ***
Case           15 has large leverage   (Leverage =        0.328)
 
Durbin-Watson D Statistic          1.853
First Order Autocorrelation       -0.018

>rem Model 2
>model paup=constant+outratio+propold
>estimate
 
Dep Var: PAUP   N: 32   Multiple R: 0.681   Squared multiple R: 0.464
Adjusted squared multiple R: 0.427   Standard error of estimate: 12.486
 
Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
CONSTANT           -27.822       24.588        0.000      .      -1.132    0.267
OUTRATIO             0.718        0.176        0.558     0.988    4.075    0.000
PROPOLD              0.606        0.248        0.335     0.988    2.446    0.021
 
Analysis of Variance
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
Regression              3906.190     2     1953.095      12.528       0.000
Residual                4521.029    29      155.898

-------------------------------------------------------------------------------
*** WARNING ***
Case           15 has large leverage   (Leverage =        0.374)
 
Durbin-Watson D Statistic          1.970
First Order Autocorrelation       -0.051

>rem Model 3
>model paup=constant+outratio+propold+pop
>estimate
 
Dep Var: PAUP   N: 32   Multiple R: 0.835   Squared multiple R: 0.697
Adjusted squared multiple R: 0.665   Standard error of estimate: 9.547
 
Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
CONSTANT            63.188       27.144        0.000      .       2.328    0.027
OUTRATIO             0.752        0.135        0.584     0.985    5.572    0.000
PROPOLD              0.056        0.223        0.031     0.711    0.249    0.805
POP                 -0.311        0.067       -0.570     0.719   -4.648    0.000
 
Analysis of Variance
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
Regression              5875.320     3     1958.440      21.488       0.000
Residual                2551.899    28       91.139
 
-------------------------------------------------------------------------------
*** WARNING ***
Case           15 has large leverage   (Leverage =        0.424)
Case           30 is an outlier        (Studentized Residual =        3.618)
 
Durbin-Watson D Statistic          2.344
First Order Autocorrelation       -0.177

>rem Model 4 (trimmed model)
>model paup=constant+outratio+pop
>estimate
 
Dep Var: PAUP   N: 32   Multiple R: 0.835   Squared multiple R: 0.697
Adjusted squared multiple R: 0.676   Standard error of estimate: 9.391
 
Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
CONSTANT            69.659        7.685        0.000      .       9.065    0.000
OUTRATIO             0.756        0.132        0.587     1.000    5.736    0.000
POP                 -0.320        0.056       -0.586     1.000   -5.730    0.000
 
Analysis of Variance
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
Regression              5869.672     2     2934.836      33.278       0.000
Residual                2557.547    29       88.191
 
-------------------------------------------------------------------------------
*** WARNING ***
Case           15 has large leverage   (Leverage =        0.420)
Case           30 is an outlier        (Studentized Residual =        3.326)
Case           32 has large leverage   (Leverage =        0.390)
 
Durbin-Watson D Statistic          2.332
First Order Autocorrelation       -0.171



Last modified 6 Feb 2003