Kutner, Michael H., Chris J. Nachtsheim, John Neter, and William Li. 2004. Applied Linear Statistical Models with Student CD-rom. 5e. McGraw-Hill. ISBN 007310874X
Applied Linear Regression Models is a subset (14 first chapters) of Applied Linear Statistical Models. Applied Linear Regression Models includes all the materials on regression that we need for the course. Applied Linear Statistical Models is about twice as long, covering additional chapters on analysis of variance (ANOVA) and the design of experiments. The chapters common to the two books are identical. I have ordered Applied Linear Statistical Models at the bookstore, as it may represent a somewhat better deal (more pages for the money) and as some of you will be using ANOVA in your research. However if you will not be using ANOVA, or prefer to travel light, or you find a used copy (as this is the version I used last year, as the other one was not yet out) you may want to use Applied Linear Regression Models. Note that for maximum confusability the two versions have different edition numbers (5e and 4e) even though the common materials are identical!Kutner, Michael H., John Neter, and Christopher J. Nachtsheim. 2004. Applied Linear Regression Models with Student CD-rom. 4e. McGraw-Hill. ISBN 0-07-295567-8.
or (subset of the first):Neter, John, Michael H. Kutner, Christopher J. Nachtsheim and William Wasserman. 1996. Applied Linear Statistical Models. 4th edition. Burr Ridge, IL: Irwin. ISBN 0-256-11736-5
Again Regression Models consists of the first 15 chapters of Statistical Models. Statistical Models goes on with 17 more chapters covering the topics of analysis of variance and experimental designs, which we do not cover in this course. Regression Models (xv+720 pages) is much shorter (and lighter!) than Statistical Models (xv+1408 pages).Neter, John, Michael H. Kutner, Christopher J. Nachtsheim and William Wasserman. 1996. Applied Linear Regression Models. 3d edition. Burr Ridge, IL: Irwin. ISBN 0-256-08601-X
The following books with self-explanatory titles are also useful and have been ordered at student stores:
Allison, Paul. 1999. Multiple Regression: A Primer. Thousand Oaks, CA: Pine Forge Press.ISBN 0761985336 Paperback.For computer work we will use mainly STATA, but I am myself an old SYSTAT user so I will use this program to show some examples in class and you may find it useful yourself for some things that SYSTAT may do better than STATA. Both programs are comprehensive statistical packages that can be used in Odum Laboratory (Hamilton 228). STATA is also available at the Odum Institute (IRSS) computer lab in Manning Hall. The TA will help people find their way to the software in Odum lab. Students who are already familiar with another statistical program (such as SAS or SPSS) may use it for the assignments. For the remote hands-on sessions we will use STATA.
Hamilton, Lawrence C. 2006. Statistics With STATA. (Updated for Version 9.0.) Brooks/Cole. ISBN 0-495-10972-X. Paperback. (The previous Version 8 edition is very similar.)
|
||
Part 1 | SIMPLE LINEAR REGRESSION | |
Module 1 | ![]() |
|
Module 2 | ![]() |
|
Module 3 | ![]() |
|
Part 2 | MULTIPLE LINEAR REGRESSION & GENERAL LINEAR MODEL | |
Module 4 | ![]() |
|
Module 5 | ![]() |
|
Module 6 | ![]() |
|
Module 7 | ![]() |
|
Module 8 | ![]() |
|
Module 9n | ![]() |
|
Part 3 | COMPLICATIONS
OF MULTIPLE
REGRESSION: DIAGNOSTICS & REMEDIES |
|
Module 10 | ![]() |
|
Module 9 | ![]() |
|
Module 11 | ![]() |
|
Module 12 | ![]() |
|
Module 13 | ![]() |
|
Part 4 | SPECIAL DATA STRUCTURES | |
Module 14 | ![]() |
|
Module 14b | X | ![]() |
Module 14c | X | ![]() |
Module 16 | X | ![]() |
![]() |
||
![]() |
Class | Rm | Date | Subject | Web | Readings | |
1 | Thu | 12-Jan | First contact | |||
--o-- | ||||||
2 | Tue | 17-Jan | Simple linear regression | M1 | ALSM5e 1.1-1.8; ALSM4e 1.1-1.8. | |
3 | Thu | 19-Jan | Remote session #1 | |||
--o-- | ||||||
4 | Tue | 24-Jan | Statistical inference | M2 | ALSM5e 2.1-2.10 (omit 2.11 on normal correlation model); ALSM4e 2.1-2.11. | |
5 | Thu | 26-Jan | Remote session #2 | |||
--o-- | ||||||
6 | Tue | 31-Jan | Diagnostics and remedies | M3 | ALSM5e 3.1-3.6; 3.8-3.11; ALSM4e 3.1-3.6; 3.8-3.11; Wilkinson et al. (1996) | |
7 | Thu | 2-Feb | Remote session #3 | |||
--o-- | ||||||
8 | Tue | 7-Feb | Matrix representation | M4 | ALSM5e 5.1-5.13; ALSM4e 5.1-5.13. | |
9 | Thu | 9-Feb | Remote session #4 | |||
--o-- | ||||||
10 | (1) | Tue | 14-Feb | Multiple regression & general linear model | M5 | ALSM5e 6.1-6.9; 7.5; ALSM4e 6.1-6.9, 7.5. |
11 | Thu | 16-Feb | Remote session #5 | |||
--o-- | ||||||
12 | Tue | 21-Feb | Polynomial regression & interactions | M6 | ALSM5e 8.1-8.2; ALSM4e 7.7-7.9. | |
13 | Thu | 23-Feb | Remote session #6 | |||
--o-- | ||||||
14 | (2) | Tue | 28-Feb | Qualitative independent variables | M7 | ALSM5e 8.3-8.7; ALSM4e 11.1-11.7. |
15 | Thu | 2-Mar | Remote session #7 | |||
--o-- | ||||||
16 | Tue | 7-Mar | Review/Catch-up | |||
17 | (M) | Thu | 9-Mar | <<MIDTERM 9:30-10:45 AM>> | ||
--o-- | ||||||
Tue | 14-Mar | <Spring Break - NO CLASS> | ||||
Thu | 16-Mar | <Spring Break - NO CLASS> | ||||
--o-- | ||||||
18 | Tue | 21-Mar | General linear tests | M8 | ALSM5e 2.8, 7.1-7.4; ALSM4e 2.8, 7.1-7.4. | |
19 | Thu | 23-Mar | Remote session #8 | |||
--o-- | ||||||
20 | Tue | 28-Mar | Model building & specification | M9n | ALSM5e 9.1-9.6; ALSM4e 8.1-8.5 | |
21 | Thu | 30-Mar | Remote session #9 | |||
--o-- | ||||||
22 | (3) | Tue | 4-Apr | Outlying & influential observations; partial regression plots | M9
M10 |
ALSM5e 10.1-10.4, 11.3-11.4 (pp. 449-453 on LOWESS; part on regression trees optional); ALSM4e 9.1-9.4, 10.3-10.4; Fox (1991); Bollen & Jackman (1985) |
23 | Thu | 6-Apr | Remote session #10 | |||
--o-- | ||||||
24 | Tue | 11-Apr | Collinearity & ridge regression | M11 | ALSM5e 7.6, 10.5, 11.2; ALSM4e 7.6, 9.5, 10.2. | |
25 | Thu | 13-Apr | Remote session #11 | |||
--o-- | ||||||
26 | (4) | Tue | 18-Apr | Heteroskedasticity/The bootstrap | M12
M13 |
ALSM5e 11.1, 11.5; ALSM4e 10.1, 10.5; Diaconis & Efron (1983) |
27 | Thu | 20-Apr | Remote session #12 | |||
--o-- | ||||||
28 | (P) | Tue | 25-Apr | Autocorrelation in time series data | M14 | ALSM5e 12.1-12.4; ALSM4e 12.1-12.4. |
29 | Thu | 26-Apr | Review/Catch-up | |||
--o-- | ||||||
(F) | Tue | 2-May | <FINAL 8:00-11:00 AM> |